BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 50 (5), 1343—1344 (1977)

Luminescence of Aminopyridines and Related Molecules

Ko Kimura, Hideko Takaoka, and Ryo Nagai

Department of Chemistry, Faculty of Science, Osaka City University, Sumiyoshi-ku, Osaka 558

(Received November 12, 1976)

Synopsis. Quantum yields and lifetimes of fluorescence and phosphorescence were measured for 2-, 3-, 4-aminopyridines, 2-, and 4-(dimethylamino)pyridines in ethanol-methanol, in an acidic ethanol-methanol mixture, and in a mixture of triethylamine and 2-methyltetrahydrofuran at 300 K and at 77 K. Quantum yields of fluorescence of 2- and 3-substituted pyridines are appreciable, while those of 4-substituted pyridines are as low as or less than 0.01 at 77 K. In view of the significant quantum yields of fluorescence for 2- and 3-substituted pyridines in the aprotic solvent, it may be concluded that the higher excited $1(n\pi^*)$ or $3(n\pi^*)$ states are not so close in energy to the lowest excited $1(\pi\pi^*)$ states.

Quantum yields of fluorescence (Φ_f) of aminopyridines measured by Weisstuch and Testa¹⁾ at room temperature suggest that the lowest excited singlet states (S_1) of 2- and 3-aminopyridines are assigned to $(\pi\pi^*)$, in contrast with that of 4-aminopyridine, which is assigned to $(\pi\pi^*)$ in nonpolar solvents or to the charge transfer type $(\pi\pi^*)$ in polar solvents. However, in view of the significant temperature dependence of Φ_f 's for some nitrogen-heterocyclics, (π^*) measurements of (π^*) and lifetimes of fluorescence (π^*) at low temperature are desirable.

 $\Phi_{\rm f}$'s, $\tau_{\rm f}$'s, quantum yields $(\Phi_{\rm p})$, and lifetimes $(\tau_{\rm p})$ of phosphorescence for 2-, 3-, 4-aminopyridines, 2-, and

4-(dimethylamino)pyridines are summarized in Tables 1 and 2. Solvents used were ethanol-methanol (A), an acidic (0.05 M H₂SO₄) ethanol-methanol mixture (H+), and a mixture of triethylamine and 2-methyltetrahydrofuran (B). The first absorption bands of 2and 3-substituted pyridines correspond fairly well to their fluorescence bands, as judged by the mirror symmetry relationship to each other. S1's and the lowest excited triplet states (T₁) of 2- and 3-substituted pyridines are assigned unambiguously to $(\pi\pi^*)$ from Φ_i 's and τ_p 's in Table 1. The rate constants of the radiative transition (k_f) from S_1 are fairly independent of temperature and of protonation, while those of the radiationless deactivation (k_{nr}) , which are composed of the rate constants of the internal conversion and the intersystem crossing from S₁, depend significantly on temperature and on protonation. If it is presumed that the $k_{\rm f}$'s are constant irrespective of the presence or absence of protons in solvents, then k_{nr} 's are estimated from $\Phi_{\mathbf{f}}$'s without the observed $\tau_{\mathbf{f}}$'s. $k_{n\mathbf{r}}$'s at 77 K, designated in parentheses in Table 1, are calculated on this assumption, and those at 300 K on the assumption of the temperature-independent k_f 's. As the Φ_p 's of 2and 3-substituted pyridinium cations used in this work are as low as or less than 0.01 at 77 K, their k_{nr} 's correspond

Table 1. Quantum yields and lifetimes of fluorescience and phosphorescience for 2-, 3-aminopyridines, and 2-(dimethylamino)pyridine

	$\lambda_{\text{f max}} $ (nm)	$oldsymbol{arPhi}_{ m f}$	$ au_{\mathbf{f}}$ (ns)	$k_{\rm f} \times 10^{-7}$ (s ⁻¹)	$k_{\rm nr} \times 10^{-7}$ (s ⁻¹)	$\lambda_{p \text{ max}} $ (nm)	$\phi_{ m p}$	(\mathbf{s})
300 K								
2AMP(H+)	366	0.63	14.8	4.3	2.5			
(\mathbf{A})	348	0.28			(12)			
(B)	338	0.06			(70)			
2DMAMP(H+)		< 0.01						
(\mathbf{A})	370	0.36	12.2	3.0	5.3			
(B)	351	0.23			(11)			
3AMP(H+)	402	0.44	18.8	2.3	3.0			
(\mathbf{A})	352	0.24			(10)			
(B)	344	0.06			(52)			
77 K								
2AMP(H+)	349	0.71	16.2	4.4	1.8	482	< 0.01	1.8
(\mathbf{A})	346	0.52	11.7	4.4	4.1	441	0.10	2.0
(B)	341	0.35			(8)	435	0.19	1.4
2DMAMP(H+)	389	0.47	15.0	3.1	3.5	472	< 0.01	1.4
(A)	355	0.44	13.6	3.2	4.1	441	0.16	1.7
(B)	346	0.29			(8)	431	0.18	1.1
3AMP(H+)	377	0.70	20.5	3.4	1.5	452	< 0.01	1.3
(A)	352	0.54	16.3	3.3	2.8	465	0.33	3.0
(B)	344	0.15			(19)	442	0.41	2.7

2AMP, 3AMP, and 2DMAMP represent 2-, 3-aminopyridines, and 2-(dimethylamino) pyridine, respectively. k_f 's and k_{nr} 's are deduced from the following equations: $k_f = \Phi_f/\tau_f$ and $k_{nr} = (1 - \Phi_f)/\tau_f$.

Table 2. Quantum yields and lifetimes of phosphorescience for 4-aminopyridine and 4-(dimethylamino)pyridine at 77 K

	$\lambda_{p \text{ max}} $ (nm)	$oldsymbol{arPhi}_{ m p}$	$(\begin{array}{c} au_{ m p} \ (\begin{array}{c} au \end{array})$
4AMP(H+)	359	0.45	2.0
(\mathbf{A})	359	0.51	1.9
(B)	373	0.32	0.7
$4DMAMP(H^{+})$	401	0.12	1.6
(\mathbf{A})	392	0.42	1.6
(B)	388	0.24	0.5

approximately to the rate constants of the internal conversion from S_1 . However, the estimated k_{nr} 's in an aprotic solvent at 77 K are fairly large, and suggest a significant contribution of the rate constants of the intersystem crossing from S_1 , in view of decrease in Φ_f 's and the corresponding increase in Φ_p 's. An increase in k_{nr} 's for 2- and 3-aminopyridines in the aprotic solvent at 300 K may arise from the temperature dependence of the rate constants of the intersystem crossing³⁾ as well as those of the internal conversion, in marked contrast with the almost temperature-independent k_{nr} of 2-(dimethylamino) pyridine in the same solvent. However, the fairly large k_{nr} for a 2-(dimethylamino)pyridinium cation might be deduced from the scarcely observed $\Phi_{\rm f}$ at 300 K, which is quite opposed to the change in $\Phi_{\mathbf{f}}$'s found in 2- and 3-aminopyridinium cations. In view of the large Φ_{ϵ} 's even in the aprotic solvent at 77 K, the singlet or triplet $(n\pi^*)$ states of 2- and 3-substituted pyridines are not so close in energy to the S_1 's.

The Φ_f 's of 4-substituted pyridines are smaller than 0.01 at 77 K, irrespective of the solvents used in this work. The phosphorescence spectra of 4-aminopyridine show vibrational structures, in which a characteristic vibration at 850 cm⁻¹, indicative of the C-H out-of-plane deformation mode of aromatic rings, may be found, while those of 4-(dimethylamino)pyridine are without vibrational structures.⁴⁾ As is summarized in Table 2, the large Φ_p 's and the long τ_p 's suggest that

the T_1 's of 4-substituted pyridines are $(\pi\pi^*)$ irrespective of solvents used. The small Φ_f 's of 4-substituted pyridines in the aprotic and the acidic solvents at 77 K are consistent with the assignment of S_1 's proposed by Weisstuch and Testa.¹⁾

Experimental

2-, 3-, 4-Aminopyridines, and 4-(dimethylamino) pyridine were recrystallized three times from ethanol-ligroin, then purified through a basic alumina column, and finally sublimed in vacuo. 2-(Dimethylamino) pyridine was distilled through a spinning band column, then purified through a basic alumina column, and finally distilled twice in vacuo. Triethylamine and 2-methyltetrahydrofuran were stored over sodium-potassium alloy after distillation through a stainless steel helices packed column, and used without exposure to air. The methods of purification of other solvents and reagents were described elsewhere.⁵⁾

Measurements of Φ_f 's, Φ_p 's, τ_f 's, and τ_p 's were the same as those described elsewhere.⁵⁾ The concentrations used in the measurements of Φ_f 's and Φ_p 's and those of τ_f 's and τ_p 's were $10^{-2}-10^{-3}$ M and $10^{-4}-10^{-5}$ M, respectively. In the former case, the correction of concentration quenching, if necessary, was made by the use of the Stern-Volmer equation. All the samples were evacuated by the repeated cycles of freezing, pumping, and thawing. Then, the sample cells were sealed off from the evacuation system.

References

- 1) A. Weisstuch and A. C. Testa, J. Phys. Chem., 72, 1982 (1968); 74, 2299 (1970).
- 2) Y. H. Li and E. C. Lim, Chem. Phys. Lett., 9, 279 (1971); M. Koyanagi, R. J. Zwarich, and L. Goodman, J. Chem. Phys., 56, 3044 (1972); R. Li and E. C. Lim, J. Chem. Phys., 57, 605 (1972).
- 3) E. W. Schlag, S. Schneider, and S. F. Fischer, Ann. Rev. Phys. Chem., 22, 490 (1971).
- 4) S. Hotchandani and A. C. Testa, J. Chem. Phys., 59, 596 (1973).
- 5) K. Kimura and R. Nagai, Bull. Chem. Soc. Jpn., 49, 3343 (1976).